Integers Unit Study Guide

| Objective | Mastered It(check mark) | Need More Practice (check |
| :--- | :--- | :--- |
| mark) |  |  |

## Projects

## Complete the following project

## Part A: Graphs/Equations/Table of Values (20\%)

- Create a Minecraft world where patterns are created. Then you must create an area where you chart the data using Table of Values, create a graph out of blocks that you created out of a block grid system as well as an equation that containes an $x$ and a variable. Then you must use substitution to predict how many items would exist in 1003 diagram (or whatever number you want). Record your virtual world using a free desktop recorder. CamStudio is a great free recorder that you can download off google. There are others as well. Post the video on YouTube.
- Do the exact same project above without using Minecraft. Instead create a pattern out of things in your area. It could be food, toy blocks, tooth picks, a drawing you made or anything else that can be used to create a pattern. Repeat everything else after that. Record your Video presentation and post it on YouTube. If privacy is a concern to you, you may mark the video as private so only you and I are able to watch it.


## Part B: Algebra Tiles (10\%)

- Solve 2 different 1 step equation and 2 different 2 step equations using Algebra Tiles. Record your presentation and post it on YouTube.


## Grading For This Unit

## 4 quizzes (10\% each)

- Translating Equations into Sentences
- Relating Graphs, Equations and the Table of Values.
- Using Substitution to Solve for missing information.
- Solving a 1 and 2 step equation algebraically.

2 Projects (30\%)

Unit Test (30\%)

Teacher Name: Mr. Melhem

Student Name:

| CATEGORY | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| Mathematical Concepts $\times 2$ | Explanation shows complete understanding of the mathematical concepts used to solve the problem(s). | Explanation shows substantial understanding of the mathematical concepts used to solve the problem(s). | Explanation shows some understanding of the mathernatical concepts needed to solve the problem(s). | Explanation shows very limited understanding of the underlying concepts needed to solve the problem(s) OR is not written. |
| Mathematical Reasoning | Uses complex and refined mathematical reasoning. | Uses effective mathematical reasoning | Some evidence of mathematical reasoning. | Little evidence of mathematical reasoning. |
| Mathematical Errors | $90-100 \%$ of the steps and solutions have no mathematical errors. | Almost all (85-89\%) of the steps and solutions have no mathematical errors. | Most (75-84\%) of the steps and solutions have no mathematical errors. | More than 75\% of the steps and solutions have mathematical errors. |
| Explanation <br> $\times 2$ | Explanation is detailed and clear. | Explanation is clear. | Explanation is a little difficult to understand, but includes critical components. | Explanation is difficult to understand and is missing several components OR was not included. |
| Mathematical Terminology and Notation | Correct terminology and notation are always used, making it easy to understand what was done. | Correct terminology and notation are usually used, making it fairly easy to understand what was done. | Correct terminology and notation are used, but it is sometimes not easy to understand what was done. | There is little use, or a lot of inappropriate use, of terminology and notation. |

Teacher Name: Mr. Melhem

Student Name:

| CATEGORY | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| Mathematical Concepts $\times 2$ | Explanation shows complete understanding of the mathematical concepts used to solve the problem(s). | Explanation shows substantial understanding of the mathematical concepts used to solve the problem(s). | Explanation shows some understanding of the mathernatical concepts needed to solve the problem(s). | Explanation shows very limited understanding of the underlying concepts needed to solve the problem(s) OR is not written. |
| Mathematical Reasoning | Uses complex and refined mathematical reasoning. | Uses effective mathematical reasoning | Some evidence of mathematical reasoning. | Little evidence of mathematical reasoning. |
| Mathematical Errors | $90-100 \%$ of the steps and solutions have no mathematical errors. | Almost all (85-89\%) of the steps and solutions have no mathematical errors. | Most (75-84\%) of the steps and solutions have no mathematical errors. | More than 75\% of the steps and solutions have mathematical errors. |
| Explanation <br> $\times 2$ | Explanation is detailed and clear. | Explanation is clear. | Explanation is a little difficult to understand, but includes critical components. | Explanation is difficult to understand and is missing several components OR was not included. |
| Mathematical Terminology and Notation | Correct terminology and notation are always used, making it easy to understand what was done. | Correct terminology and notation are usually used, making it fairly easy to understand what was done. | Correct terminology and notation are used, but it is sometimes not easy to understand what was done. | There is little use, or a lot of inappropriate use, of terminology and notation. |

